IBM researcher Kevin Nowka talks about the big, big data

Austin Forum 2014 Kevin Nowka big data

Dr. Kevin Nowka at the AT&T Center at the Austin Forum.

Dr. Kevin Nowka is cute. He’s a little nervous to leave his laptop in the AT&T conference room just to go out for a photo shoot. But when he stands in front of those pretty red flowers and start smiling into the sun for the Austin Forum photogs, he looks as so cute I want to hand off all of my personal data to IBM.

Dr. Nowka, a grad of Stanford University and the director of IBM Research, Austin, specializes in high-performance and low-power circuits, processor design, and technology. He works with teams of scientists studying system models, creating faster and ever more efficient VLSI circuits (Very large-scale integrated circuits, see WIKI for more: The short version: they are packing thousands of transistors on a single chip. Go, IBM. Make my phone smarter. Or make my Nest thermostat. And other intelligent whatnot.)

A VLSI integrated-circuit die

The dilemma of big data: we can capture it, but who will put it to effective use? Dr. Nowka discussed the new tech twists that will put the tools for data management into play.

So…big problems cause big data. But, to solve big problems, we need big data. They are interrelated.

Nowka listed off some examples of big data, big problems, and big opportunities:

  • Highway congestion: urban roadways that are broken by being underbuilt and causing congestion cost the U.S. roughly 5.5 billion an hour and 2.9 billion gallons of wasted fuel. (Statistics from Texas Transportation Institute).
  • The U.S. could save $130 billion annually by deploying smart-grid technology to electrical delivery systems.
  • Big data analysis goal is to draw value from data that has variety, velocity, volume, and veracity. Apply this intentionality to law enforcement, traffic control, telecom, manufacturing, and more.
  • Gross waste of resources in government systems could be addressed by clever applications of tech to big data, going after fraud, reducing waste.

The volume of digital data is expected to double every two years. That goes for you, for me, for the US, for the Library of Congress, etc. Just think how much data you personally store; you are probably creating increasing amounts of personal data with no end in sight.  By 2017, the total digital data will surpass the number of stars in the observable universe.

And the more access people have, the more data they create. About two-thirds of the world still does not have access to the Internet, so we can expect our data creation to grow exponentially as more of the world gets connected.

There were 5.9 trillion text messages sent in 2011. That represents five times more data than the voice data sent via phones. (Phone factoid: there are more than 6.3 billion mobile phones out there.)

BRL61-IBM 305 RAMAC.jpeg
By User <a href=”; class=”extiw” title=”en:User:RTC”>RTC</a> on <a class=”external text” href=””>en.wikipedia</a&gt; – Photo by U. S. Army Red River Arsenal, Public Domain, Link

A picture of the IBM RAMAC disc storage from 1950s. We now can store a thousand times more data on the average memory stick.  ( )

Social interactions as well as mobile communications create almost unimaginable amounts of data. And the type of data is changing: currently 80 percent of the data being created is now unstructured. (Structured data is data in a relational database. Unstructured is…everything else.) And data is connecting to other data, as refrigerators hook up in a horrifying and obscene ways with phones, toasters, tablets, and, ultimately the 2001 Hal computer. (I added that last part, not Dr. Nowka).

Something to think about the next time you take a ride on a plane: it takes a billion lines of code to run the software that runs an airplane. Each engine on a plane generates 10-TB every 30 minutes.

Also, 70 percent of most data is multimedia. Don’t just think images from your phone. More than a billion medical images were generated just in 2012.

Velocity: data is in motion, coming at us in gigabit speed. It can be managed in “real time” models, and used to predict. We can take actions based on what the data tells us. Homeland security requires 50 billion records a day; 320 terabytes of deep analysis.

A scary reality: one in three business leaders polled said they were making business decisions without a clear understanding of what their company data is indicating.

So, how do you make sense of unstructured text data? Since computers got us into this giant data situation, perhaps we can use them to help us make sense of it.

Currently a tiny percentage of potentially useful data is tagged, and less is analyzed. This makes me think of crowd-sourced data tagging, such as crowd corrections of facts in WIKI, in Google maps, in WAZE, a hundred more such loose but effective collaborations.

Tagging data: word based, or topic based tagging. Machine learning is being used to classify words into topics, which can then be mined, to retrieve and analyze the specific data that is relevant to a specific topic or keyword.  Think “Ben Laden.” You probably should not say that phrase on your cell phone or in an email — or in a blog post. Whoops!  JK. But, seriously. Watch what you say, type, blog.

Nowka showed us an IBM application that sifts through Facebook data to find selected topics. He can do the same thing with your tweets, and snag location information, too.

Austin Forum 2013 Kevin Nowka: big data

Image data. Computers are making sense out of it. Consider medical image category recognition software: it combs through millions of images to locate images that correlate to a topic of interest on a specific disease. Consider ImageCLEF 2012: a computer attempt to classify images into categories that yielded about 88% correct image classification.  ( )

The next step is having a natural language access to big data. Watson is an open domain question answering system that delivers precise answers to questions, with accuracy. IBM Watson finds, reads, scores, and combines information. It searches structured and unstructured data. It finds potential answers and compares in a scoring engine to determine confidence level in the potential answer.

It is important to know when you do not know. (“There are unknown unknowns – the ones we don’t know we don’t know.” – Donald Rumsfeld, U.S. Secretary of Defense at the time.) A system like WATSON can help us avoid the “unknown unknowns.”

Dr. Nowka vision is big: data analytics taking a variety of high volume, high velocity data of all types, and using natural language accessible systems such as IBM Watson to mine that data for meaning and substance. There is no shortage of problems that we can apply to analytics.

So, questions. How can big data not become…evil? Nowka says, “Knowledge is power. But those in control of data should be making sure that privacy is protected for those whose data is being processed.”

What’s next? How close can we come to AI mimicking the robustness of human analysis? Nowka speaks of IBM Watson and what it can, and cannot do, at this time.

What sort of cool places will IBM go as they play with their big data? Currently, IBM is investing in Smarter Planet. IBM tech is going after big city issues, after safety, petroleum, traffic, after health issues. IBM wants to apply Watson to big health centers such as Sloan Kettering. So much more can be found on their website. ( ).


Austin Forum event for Big Data

Texas, Fight!!! (over road funding)

Tribfest 2013 Panel transport Txdot dir 5 shot panel 02

Panel discussion with Drew Darby, Juan “Chuy” Hinojosa, Robert Nichols, Joe Pickett, Tommy Williams, moderated by Erica Greider. @ the 2013 annual Texas Tribune Festival on the UT Austin campus. 

There’s nothing Texans enjoy more than a good fight, and there is nothing quite as much fun as watching Texans rassle over how to apportion money for road maintenance, repair, and for new roads. How to fund it? Who should get what?

With 10M annually in the TxDOT budget for roads, Phil Wilson is asking for more money, and I am not one to deny TxDOT what they need to keep us safe on Texas roads. No matter how efficient they become at using resources, there is a desparate need for more money. Not all agree.

The lions share of the money, according to State Senator Robert Nichols, a very reasonable fellow and hardworking chairman of the transportation committee in the Texas Senate, goes to maintenance. Not everyone understands how important this work is for traveler safety.

Planning and  development is done 10 years, 20 years out, by construction planners, and the massive funds must be dedicated for years in advance to keep the system working functionally.

The problem is that Texas has not been adequately funding for maintenance, much less massive growth. This is coming home to roost on Texas legislators, like an angry, sharp-taloned Velociraptor.

It has lived off a diet of city and state bonds, toll-road deals, and federal stimulus funds. But that money is gone, according to various transportation experts, and the billion dollar question is: what funding source comes next?

Meanwhile, we are converting some rural paved roads to gravel. Is the funding situation that urgent, or is that a political ploy to motivate funding?

Since the Texas Governor, Rick Perry, has vowed to veto bills that would transfuse more money into the system, and the Texas Lege session has ended, we are back to the talking stage now, rather than acting.

So we are back to toll deals, “efficiency” schemes like “two wheels on a gravel road,” and the hope that next time the Lege is in session we’ll have a new governor and a legislature with the “political will” to vote for what Texans need: safer roads, funding for transit, improved congestion planning, more and better targeted rail projects, support for multi-modal ideas, and pavement for those gravel roads.

There is a plan afoot — inspired by a earlier bill by Chairman Nichols that was not passed by the Senate – where a committee will decide whether use some banked money to spend down some transportation-related debts or borrowed funding for future construction. As Tommy Williams says —  and he prefaced the remark with an statement, born of exasperation, about trying to satisfy the whims of nabobs this year while at the Lege — “Why leave money in a low-interest savings account when you could pay off a high-interest on a loan?”

A politico from one of Texas’ rural counties made a case for increased state funding for the maintenance of rural roads. With hundreds of drill permits, unheard of sums are being spent by counties just to re-gravel damaged roads. They are asking for more state support for these county-owned roads.

Historically, in Texas rural areas, the primary county roads were converted into highways, and many other roads were also upgraded and brought into the fold of TxDOT funding and maintenance.

The state is benefiting from revenue coming out of drilling, but so are the companies who are doing the drilling. Why don’t those companies pay more for the damages they inflict with oversize, overweight, superheavy trucks used for drilling and shale-related work?

Tribfest 2013 Att Texas Fight road funding

The future of transportation in Texas: dystopia? We need to work a 12-step on this, Mr. Wilson

Tribfest 2014 Transport Pickett 4 more

Panel Discussion: Deirdre DelisiMichael MorrisLarry PhillipsNicolas RubioPhil Wilson, with Aman Batheja (mod.)

Texas Tribune Festival has once again brought TxDOT Director Phil Wilson, along with other heavy hitters in Texas transportation to the UT Austin campus to discuss the future of Texas roads. What does our future hold? I am as curious as the next traveler to hear how exactly the state plans to manage the complex problems of funding, logistics, and implementation.

TxDOT does not appear to be doing business as usual, at least not as far as transportation research is concerned. Universities all over the state are wondering where the funding went, as TxDOT has not released research funds at this time for fiscal year 2014. Other types of funding continues, such as inter-agency contracts and funding to professional consultants.

(UPDATE: Phil WIlson said, after the event, that there will be some major surprises related to the research funding for FY 2014.  Perhaps soon the uncertainty for the UT System and A&M System research groups will be resolved. I hope so. Research centers are fragile and highly dependent upon annual funding programs such as UTC, SWUTC, TxDOT, city funding, and other federal funding. If graduate students go elsewhere for their masters and Ph.D. engineering studies, Texas will lose a lot of smart young people who spend their time at universities performing research and coming up with solutions to transportation problems.)

I personally do not understand the continued determination, in the face of a broad lack of public and legislative support, for foreign-funded toll road projects. Texas can’t seem to figure out any other way to fund roads anymore. Are TxDOT officials trendsetters —  or is this the beginning of a transport dystopia, where only the wealthy will ride the highways, while the rest of us will have to make do with gravel roads, impoverished public transit systems, and whatever roads are left that are not “privatized”? One justification is that tolled lanes will cover the cost of the maintenance of the other highway lanes. But toll roads are encroaching on the entire system. There are entire roads drivers can’t use anymore unless they pay at toll to use it.

Phil Wilson compared TxDOT to a factory doing factory production. That is not a remark that would be made by an engineer. But TxDOT no longer puts engineers at the top of the management system. The beleaguered TxDOT “factory” is now in the hands of management generalists. Mr. Wilson, as he is not an engineer, has brought a different culture to the organization. Some like it, some don’t. I admit to being prejudiced in favor of engineers and other scientific types, but some would say that TxDOT was myopic and needed a more business-centric vision. Maybe I just like men with pocket-protectors, calculators, and coke-bottle glasses.

They all look more tired than they did last year at this same event. And maybe a little beat up.

Micheal Morris wondered aloud about why Phil Wilson took this unpleasant job of running TxDOT. I’m pretty sure that TxDOT hired him at a salary that dwarfed what was paid for the last TxDOT director – who by the way happened to be an engineer with a PE license. But no amount of money can compensate for the pain of being the top target to complain to – and about – for transportation. With the economy where it is, and with funding for transportation as messed up as it is, the job of running TxDOT basically sucks. It must be even more challenging now that there are fewer engineers in the trenches to oversee the complex and demanding transportation needs of one of the largest states in the nation.

“People should be outraged,” says Michael Morris, who is a nice guy and a person I respect. He is old school and has a nice face. He says that we are not taking steps to support the areas of Texas that are bringing in the top three revenue producing endeavors in the State. Morris hopes someday that Washington will do a better job of funding transportation. But with the current situation as it is, he is a realist: local regions will build infrastructure however they can. Morris refers to a layered approach to funding which translates to making many deals with whatever devils will help to pay for construction.

Morris points that the gas tax revenue stream is dwindling to a trickle due to decades of inflation and there is intractable resistance to raising that gas tax. The increasing efficiency of vehicles diminishes the revenue still further and we now see the advent of electric vehicles beating down the same roads. How long will the Texas Lege and the feds be too afraid of the voting public to raise the gas tax?

It’s like beating a dead horse to bring this up, again and again. The U.S. used to pay its way on roads maintenance up front with a gasoline tax. It was a funding mechanism based on charging those who use the roads the most, but no one will raise that tax. If we need a new funding mechanism, what should it be?

Morris makes a lot of sense. He uses terms like engineering design standards. I like type of language better than the management buzzwords earnestly used by Mr. Wilson — or his 12-step reference to “the insanity of doing the same things over and over while expecting different results.” Is he unconsciously making a reference to our American addiction to driving cars solo down roads to nowhere?

Tribfest 2014 transport posters

Rock star: Chicxulub, the 65 million year old crater that rocked the world

SxSW 2013: Chicxulub, crater rocked the world

Austin Forum hosted Dr. Sean Gulick who has been studying the region of Chicxulub crater, which was created when a gigantic meteor rocketed down from the sky and plummeted into the ocean near the Yucatán Peninsula in Mexico 65.5 million years ago. After contemplating the damage done by this massive space rock, you don’t need to have specialized knowledge about rocks, craters, or geology to understand that stray asteroids slamming into the earth are Bad News and that humanity has got to send a contingent of explorers and colonizers off this planet before another event of this nature occurs, potentially bringing on the extinction of our species.

Dr. Sean Gulick

Dr. Sean Gulick in Progresso, Mexico, near the Chicxulub Impact Crater (from UT Austin’s Institute for Geophysics.

We live in denial about how fragile life on Earth is. Viewed from a human scale, the planet seems so big, eternally rotating, tilting, seemingly stable, predictable. Sadly, we Earthlings are not spinning around in the best of neighborhoods. Dr. Gulick showed a slide covered with black dust specks: each speck represented a hunk of space junk whizzing around in our solar system, many with the potential to slam into Earth and rock our world. Literally.

It took a long time for geologists to discover the giant depression in the ocean floor now known as the Chicxulub impact crater. When it was found, hopeful entrepreneurs drilled the area, seeking oil. What they found instead was evidence that an extraterrestrial rock landed there, putting a violent and sudden end to the age of the dinosaurs and driving the planet from the Cretaceous period into the Paleogene period. Scientific evidence has proved that the sudden mass extinction at the end of the Cretaceous period was caused by a single event: a destructive meteor.

When you view a virtual model of a relatively small hunk of rock hitting a planet, it does not seem like a meteor could cause that much damage. Earth, huge; meteor rock, comparably small. However, the asteroid that made the Chicxulub crater was large: 10 kilometers, or six miles, wide.

One way to measure how big a meteor was was is to consider how deep its impact was on the earth. This could be phrased as, “How big a hole did it punch into the earth?” The “transient” crater — the first impact of the crater, before the earth affected by the impact melted, uplifted, and froze in time with the top layer rolling over into the crater — was probably 35 kilometers deep and 100 kilometers across.

But it’s not all about meteor size and the crater it creates: a crater’s impact on the earth transfers extraordinary kinetic energy to the planet. The Chicxulub asteroid was moving about 22 kilometers per second, or 50,000 miles per hour. When it hit Earth, about 1% of the energy of the impact was displaced into tsunamis and hurricane force winds. The other 99% of the energy was directed into its target: Mother Earth.

Dr. Gulick described that energy force as equal to 13 earthquakes combined. The heat from the blast cooked anything within 750 miles. Millions of glassy balls of molten impact material rained death on every living thing, from dinosaurs to trees, as the rocks and earth became suddenly fluid, like water, under the extreme forces when the two space objects – earth and meteor – collided. Particulate matter was thrown into the earth’s atmosphere, turning day into night and plunging the planet into a three-year global winter. World-wide darkness suppressed photosynthesis and collapsed food chains.

Dr. Gulick pointed out that the “ejecta” was worse than the impact itself. The matter that was thrown into the air increased the sulfur content of the atmosphere, caused acid rain, emitted infrared rays that heated up the nearby atmosphere like a pizza oven, and changed the chemistry of the ocean, causing mass extinction.

The meteor killed off most of the life on Earth. What survived after that massive storm of destruction were significantly smaller life forms, such as the mammals who evolved into humans.

We have to get to know impact craters and the meteors that cause them much better, because there is a chance that one day a meteor will end life as we know it — again. The meteor that slammed into the Chixculub Crater may have resulted in humans as top dog on Earth, but the only constant in life is change.

This UT Austin Forum presentation was sponsored by the Texas Advanced Computer Center (TACC). Big, big data needs to be analyzed to learn about our planet’s prior experiences with meteors, about crater impacts on other planets, and about the meteors that are careening around in space, possibly on a path to slam into the earth in the future.

Did anyone have a clue that a meteor was about to smash into Russia in February, the largest to hit the planet in more than 100 years? Nope. Let’s put some funding into meteor detection and deflection. Consider the footage taken in Russian Urals region. If what happened in Russia in 2013 were to happen over a metropolitan area, it would be a major catastrophe. At it was, it caused extraordinary damage, injured more than 1,000, and for a brief time emitted light that was brighter than the sun. (See Wiki on Chelyabinsk meteor.)

Although there are less of these impact events on Earth now than say, 65.5 million years ago, we don’t see near as many craters than we should. For an idea of what’s really going on, take a gander at the moon. Heck, there’s so many impact craters that the scientists give them names.

Meteor Russian Urals

Russian Urals region meteor crater: recovered rock could be part of the Chelyabinsk meteor. Pix from Daily Mail, UK.

Compare earth and our lunar companion: the moon looks like a teenager’s skin under a harsh light. One reason we don’t see big impact craters on the earth’s surface is because the surface is constantly changing. And by constantly changing, Dr. Gulick means every 200 million years or so, give or take 50 million, when the tectonic plates shift around, effectively covering up impact craters. Space junk was smacking into us at a higher order of magnitude then than now, but the evidence has been swept under the oceanic plates.

Chicxulub is the only confirmed “extinction” crater on the planet: ground zero for the end of the non-avian dinosaurs. Not that there have not been other mass extinctions. In fact, there have been four or five of them. There are theories that acidification of the ocean – similar to the ocean changes observed by scientists today  – might be the cause of some earlier planetary extinctions. But that is the subject of some other blog post.

Sleep soundly if you can, as you consider that before another 45 million years pass, it’s likely this planet will be hit with another extinction-producing asteroid….anytime in the next 45 million years. Maybe tonight.

Tribfest 2014 Crater Slide Science is hard

A scientist could into detail about the carbonates, the enhanced dissolution, impact melt, mega blocks, crater seismic gravity, magnetic wells, melt sheets, gravity anomalies, distinct ejecta distribution patterns, velocity models…gigapascals…tons of gigapascals… but this part was way over my head.

Tribfest Slide Fireball

But…fireball layer! That, I can picture.

Actually, I didn’t picture it quite like Dr. Gulick’s slide. I was picturing something more like the Burning Man fireball.

The catastrophic events that follow a massive meteor impact are unimaginable – except to scientists, who created an animated movie of the global catastrophe combined with scary music. Thankfully, the clip does not depict balls of hellfire raining doomsday on screaming tyrannosaurs, raptors, and sauropods.

In the next two years, the scientists involved in the study of the Chicxulub impact crater plan a drilling expedition to the location. They are interested in what kind of material will be found deep in the crater. It was incredibly hot at the Chicxulub area for about two million years. Life forms evolved in the thermal springs: what must they have been like?

The scientists also want to perform studies comparing the Chicxulub crater with craters on other planets. There will be opportunities for teachers and other researchers to participate in these future studies. If you want to get involved, contact Dr. Gulick.

And what blog posting about the end of the Age of Dinosaurs would be complete without a happy moment spent watching Godzilla dancing?

Event: “The 65.5 Million Year Old Chicxulub Impact Crater: Insights into Planetary Processes, Extinction and Evolution” presented by Dr. Sean Gulick, Research Associate Professor, Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin.

About the speaker: Dr. Sean Gulick is a research associate professor in the Institute for Geophysics at The University of Texas at Austin. His primary scientific interest is the examination of deformation of the Earth. Current projects include examining tectonic and glacial climate linkages in Alaska, investigations of geophysical images of the Chicxulub impact crater, and many others. To learn more about these projects:

Update: The team blogged their expedition and research on location, which came to a close in in 2016:

Links for more information

About the Austin Forum: The Austin Forum is a monthly speaker series and networking event that hosts distinguished leaders who share their knowledge and experience about the confluence of science, technology and society in the 21st century. For more information see their website.

For more information about the Texas Advanced Computing Center (TACC):

For general info on the Chiczulub crater, see:


Create a website or blog at

Up ↑

%d bloggers like this: